

Transiting Planets: Why All the Excitement?

- ~15% of known exoplanets transit their star
- Source of real planetary astrophysics
 - Planet radii and masses (and thus densities)
 - Radius from transit light curve (area blocked)
 - Mass from radial-velocity orbit of host star together with orbital inclination from light curve
 - Spectroscopy of exoplanet atmospheres
- Just now reaching Super Earths (1-10 M_E)

Mass vs. Radius

Hot Jupiters

Super-Earths

Mass range: 1 - 10 Earths

Tim Brown and Stare

Dave Charbonneau

HD 209458

HST – STIS Light Curve

Mass vs. Radius

Hot Jupiters

Super-Earths

Mass range: 1 - 10 Earths

Gliese 436: R=3.8 R_{Earth}, M=23 M_{Earth}

Wide-Angle Photometric Surveys

- Confirmation requires an orbit for host star
 - Eliminate eclipsing binary imposters
 - Big star eclipsed by little star (e.g. F/M)
 - Eclipsing binary diluted by third star in image
 - Physical triples (and quadruples)
 - Accidental alignments
 - Derive planetary mass relative to host star
- Need high-quality light curve
 - Lots of information in detailed shape

Doppler State-of-the-Art

Quietest, slowly rotating solar-type stars

- Keck 10-m with HIRES: ~1 m/s
 - Slit spectrometer with Iodine absorption cell
 - -1 m/s requires ~ 2 hours at V=12
- ESO 3.6-m with HARPS: ~50 cm/s
 - Fiber fed with simultaneous Th-Ar
 - 1 m/s requires 1 hour at V=12
 - Located in Chile

An emerging population of Hot Neptunes and Super-Earths (from C. Lovis)

GJ581e: rms O-C = 1.5 m/s, four planet fit

Achieving better than 1 m/s: Stability & Simultaneous ThAr reference

 $\Delta RV = 1 \text{ m/s}$

 $\Delta\lambda = 0.00001 \text{ A}$

15 nm

1/1000 pixel

 $\Delta RV = 1 \text{ m/s}$

 $\Delta T = 0.01 \text{ K}$

 $\Delta p=0.01$ mBar

Vacuum operation

Temperature control

HARPS-N Spectrometer on WHT

Harvard Origins and SAO/HCO with Geneva on the William Herschel 4.2-m telescope

Ready for Kepler follow up in 2011

A HARPS clone, with improvements...

ThAr vs. Comb - FLWO, Aug. 2008

Comb lines (zoomed in) - FLWO, Aug. 2008

Research focus:

Does the diversity of planetary environments map onto a diversity of biochemistries?

Super Earths and Life sub-project:
Study the diversity of global geochemistry on Super-Earths and Earth analogs.